

Application

- For block heating, district heating systems and large central heating systems
- Self-acting

Pressure controls can be used as:

- differential pressure controls
- flow limiters
- constant flow controls

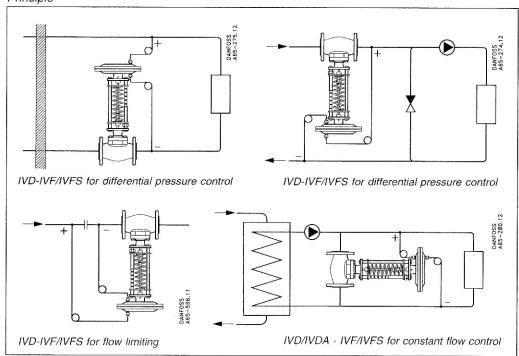
IVD-IVF/IVFS controls are self-acting proportional controls for large central heating, district heating and industrial heating systems.

The control consists of IVD control section and single-seated IVF/IVFS valve.

Depending on control spindle orientation, the control can be used as:

- Differential pressure control or flow limiter. Valve closes on rising differential pressure.
- 2. Constant flow control. Valve opens on rising differential pressure.

As a differential pressure control IVD-IVF/IVFS maintains constant differential pressure between two measuring points independent of pressure fluctuation and varying flow volume.


As a flow limiter IVD-IVF/IVFS ensures that required max. flow volume is not exceeded. As a constant flow control IVD-IVF/IVFS ensures that flow volume does not fall below required minimum.

For example, by installing IVD-IVF/IVFS in bypass line between heating system supply and return undesired pressure rises on falling load will be avoided, and flow volume in main line will be held to required minimum (advantageous for pump and boiler). Used as constant flow control IVDA has a larger setting range than IVD

IVD/IVDA

- Sized for pressure stage PN 16/PN 25 IVF
- Sized for pressure stage PN 16
- Connection flange: DN 15 DN 50 IVFS
- Sized for pressure stage PN 25
- Connection flange: DN 15 DN 50

Principle

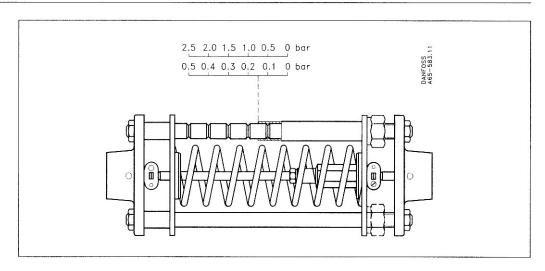
Pressure controls IVD-IVDA/IVF-IVFS

Ordering

Control spindle with setting element

Туре	Setting range	Comments	Code No. 1) PN 16	Code No. 1) PN 25
IVD	0 - 0.5 bar	0 - 0.2 bar as constant flow control	065-7280	065-7285
IVDA	0 - 0.5 bar	Constant flow control only	065-7281	
IVD	0.2 - 2.5 bar	Differential pressure control only	065-7284	065-7287

¹⁾ Including two impulse tubes and two nipples


IVF and IVFS valves with flanged connection

Connection flange DIN 2501	k _v 1)	Δp_{max}	Code No. IVF	Code No.
15 mm	0.63 m³/h	10 bar	065-7206	065-1210
15 mm	1.0 m³/h	,,, ,	065-7208	065-1211
15 mm	2.5 m³/h	8 bar 2)	065-7212	065-1213
15 mm	4.0 m³/h	/h h 8 bar ³⁾	065-7215	065-1215
20 mm	6.3 m³/h		065-7220	065-1220
25 mm	10 m³/h		065-7225	065-1225
32 mm	16 m³/h		065-7232	065-1232
40 mm	20 m³/h		065-7240	065-1240
50 mm	25 m³/h		065-7250	065-1250

Accessories and spare parts

Туре	Code No.	
Impulse tube 1.5 m long (two supplied with each IVD and IVDA	060-0072	
Brass-dipped nipple For impulse tube line connection (2 nipples included)	631X4700	
Temperature break Should be used if medium temperature is more than 170 °C	065-0030	
Teflon ring for valve body gland	065-0090	
Control diaphragm including gland	065-7279	
Gland for diaphragm	065-7278	

Setting

IVD-IVF/IVFS is set by turning setting nut, 12, see "Design". If the system is not equipped with pressure gauges, setting can be carried out using above scale. Values given are indicative only.

Note: Both setting nuts on IVD, 0.2 - 2.5 bar (see "Design", 11) must be set to avoid overload of setting part.

 $^{^{1)}}$ Max. leakage loss with closed valve 0.05 % of $k_{\rm w}.$ $^{2)}$ At settings above 0.1 bar - at settings below 0.1 bar $\Delta p_{\rm max}$ = 6.3 bar $^{3)}$ Valve is pressure-relieved

Control diaphragm

Nipples for impulse tubes

Diaphragm unit

Operation unit

Setting marking Setting spring

Gland

6. Stay bolt

Spindle

Gland 12.

10. Pressure stem 11. Setting nut

Teflon rings

Valve plate

Valve seat

Valve body

Auxiliary bellows

2.

3.

4. 5.

7. 8.

9

13. 14. Cover

15.

16.

17.

18.

Data sheet

Pressure controls IVD-IVDA/IVF-IVFS

Design

10 11. 12 13 15 16 17 18 IVD-IVF/IVFS assembled as differential pressure control

Materials Parts in contact with water

IVF Valve body and cover:

GG-25, DIN 1691,

w-no.: 0.6025

IVFS

Valve body and cover: GGG 40.3, DIN 1693,

w-no.: 0.7040

IVF/IVFS

Spindle:

17 CrMo, DIN 17440,

w-no.: 1.4122 17 CrMo, hardened

Valve seat and plate:

DIN 17440,

w-no.: 1.4122

Bellows:

CrNi steel, DIN 17440,

w-no.: 1.4301

Diaphragm:

EPDM-rubber

Gland:

PTFE-rings

Installation

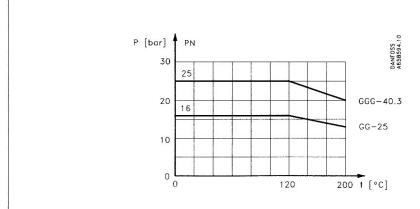
The control can be installed in any position in supply or return line, provided flow is always in cast-in arrow direction.

Pressure control IVD-IVDA/IVF-IVFS

Data

must be fulfilled:

When IVD/IVF-IVFS is applied in systems

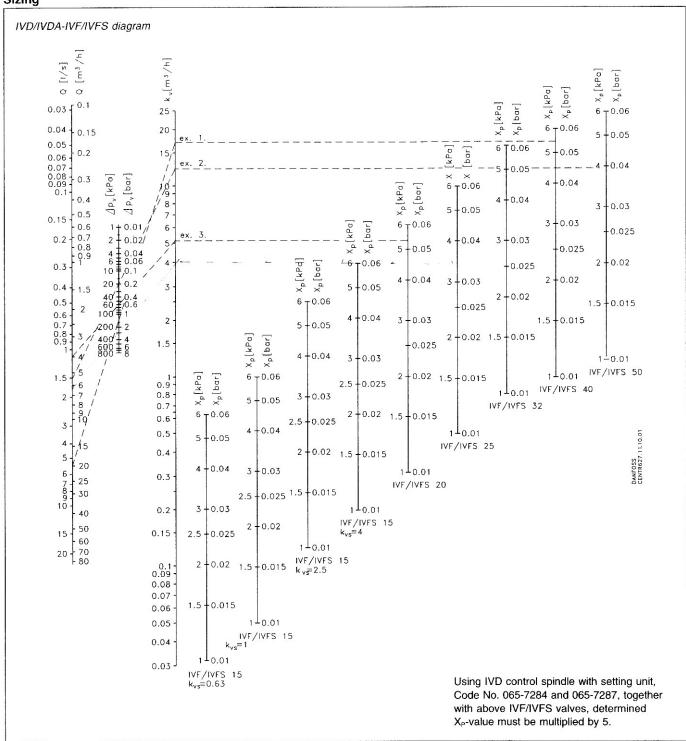

using steam as medium, below conditions

IVD cannot be used as constant flow control in systems where pump pressure is more than 20 kPa (0.2 bar). Consequently you will have to choose IVDA (Code no. 065-7281) at pump pressures above 20 kPa (0.2 bar)

IVF

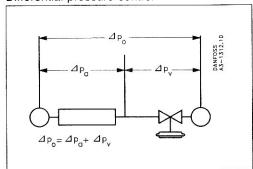
IVFS

- Pressure must be the same on both sides of diaphragm during test
- If the impulse tubes are connected to lines in which the temperature of the medium is more than 170 °C, a temperature break must be used - see "Accessories and spare parts", page 2.
- According to DIN 4747 and DIN 2401, see diagram



Pressure and temperature diagram according to DIN 4747 and DIN 2401

Pressure controls IVD-IVDA/IVF-IVFS

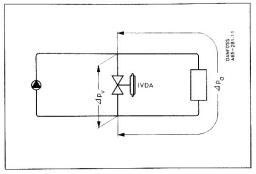


Pressure controls IVD-IVDA/IVF-IVFS

Example 1
Differential pressure control

Given

Q = 20 m³/h (5.5 l/s) Δp_0 = 160 kPa (1.6 bar) Δp_a = 20 kPa (0.2 bar) Δp_v = 160 - 20 = 140 kPa (1.6 - 0.2 = 1.4 bar)


Required Correct valve size Proportional band X_P

Method

Connect points Q = 20 m³/h and Δp_v = 140 kPa (1.4 bar). Intersection with k_v -axis will give the necessary k_v -value of 17 m³/h. From this point, take a line horizontally to the right to intersect X_P -axis and find valve size, here IVF/IVFS 40.

The control has X_P-value of 5.5 kPa (0.055 bar), i.e. differential pressure across systems must rise to 25.5 kPa (0.255 bar) before valve closes.

Example 2 Constant flow control

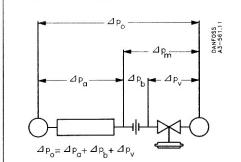
Given

 $Q_a = 7 \text{ m}^3/\text{h}$ at max. load $\Delta p_a = 15 \text{ kPa}$ (0.15 bar) at max. load

Required

With closed radiator valves, max. Δp_a must be limited to 20 kPa (0,20 bar). Pump characteristic indicates that Q = 5.5 m³/h at Δp_a = 20 Kpa (0.20 bar) (permissible system pressure rise)

Method


Connect points Q = 5.5 m³/h and Δp_v = 20 kPa (0.20 bar). Intersection with k_v -axis will give the necessary k_v -value of valve \approx 12 m³/h. From this point, take a line horizontally to the right to intersect X_P -axis and find valve size with $X_P \le 20 - 15 = 5$ kPa (0.05 bar), here both IVF/IVFS 40 and IVF/IVFS 50 have $X_P \le 5$ kPa (0.05 bar).

Choose the smallest valve, i.e. IVD-IVF/IVFS 40. At max. load, i.e. $\Delta p_a = 15 \text{ kPa}$ (0.15 bar), valve will be closed. At min. load valve will open so that pressure rises only to permissible value of 0.20 bar and passes 5.5 m³/h.

Pressure controls IVD-IVDA/IVF-IVFS

Example 3
Flow limitation

 $\begin{array}{lll} \Delta p_a = & \text{differential pressure across system} \\ \Delta p_b = & \text{differential pressure across restrictor} \\ \Delta p_v = & \text{differential pressure across valve} \\ \Delta p_m = & \text{differential pressure across} \\ \text{flow limitation} \end{array}$

Sizing is determined on the basis of measurement across restrictor with fixed or adjustable k_v-value.

Given

Q=4 m³/h (required max. flow) $\Delta p_m=\Delta p_b + \Delta p_v = 1$ bar (differential pressure across restrictor and pressure controller)

Required

- a) Restrictor k_v-value
- b) Valve size (pressure control)
- c) Control accuracy

a) Restrictor value

At pressure drop across restrictor $\Delta p_b = 0.4$ bar, the restrictor k_v -value is calculated as follows:

$$k_{v} = \frac{Q}{\sqrt{\Delta p_{b}}} = \frac{4}{\sqrt{0.4}} \approx 6.3 \text{ m}^{3} / \text{h}$$

b) Valve size

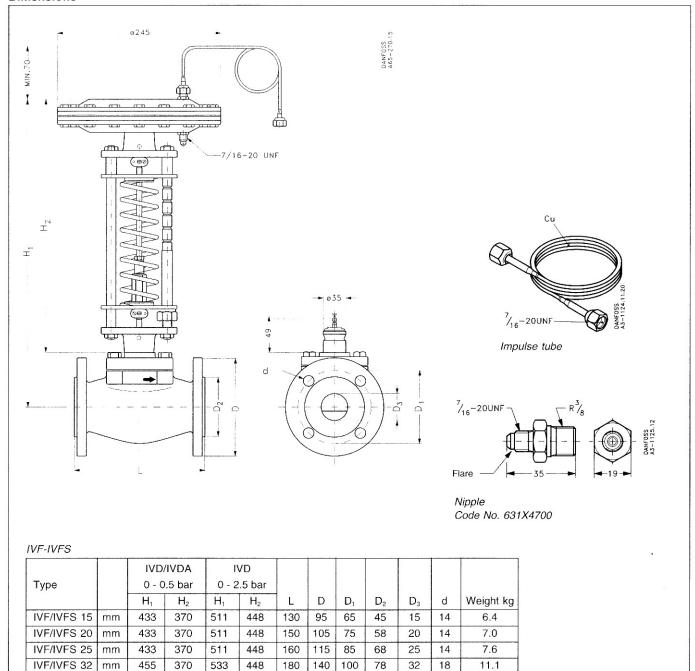
Pressure drop across valve $\Delta p_v = \Delta p_m - \Delta p_b = 1-0.4=0.6$ bar in the sizing diagram. Connect points Q = 4 m³/h and $\Delta p_v = 0.6$ bar. Intersection with k_v-axis will give the necessary k_v-value of valve ≈ 5.2 m³/h. From this point take a line horizontally to intersect X_P-axis and find valve size IVF 20 with X_p = 0.053 bar.

c) Control accuracy

Control accuracy
Control accuracy depends on the differential pressure across restrictor and valve ∆p_m being constant. At a certain differential presure increase the control accuracy can be expressed as a excess of required flow.

Example: At a doubled differential pressure across restrictor and valve, i.e. $\Delta p_m=2$ bar, the major part of the pressure increase, i.e. 1 bar, will be used by the IVF-valve, i.e. $\Delta p_v=0.6+1=1.6$ bar. The diagram includes the new k_v -value of the valve = 3 m³/h (not shown), i.e. a IVF 20 valve has a $X_P=0.038$ bar. Thus the pressure increase across the restrictor $\Delta X_P=X_{P1}$ - $X_{P2}=0.053-0.038=0.015$ bar has increased the restrictor flow as follows:

$$\Delta Q \ = \left(\sqrt{\frac{\Delta p_{b2}}{\Delta p_{b1}}} \ - \ 1 \right) \times 100 \ [\%]$$


$$(\Delta p_{b2} = \Delta p_{b1} + \Delta X_P = 0.4 + 0.015 = 0.415 \text{ bar})$$

$$\Delta Q = \left(\sqrt{\frac{0.415}{0.4}} - 1\right) \times 100 = 1.9\%$$

Pressure controls IVD-IVDA/IVF-IVFS

Dimensions

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed.

All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

IVF/IVFS 40

IVF/IVFS 50

455

455

mm

370

370

533

533

448

448

200

230

150

165

110

125

88

102

40

18

18

11.9

13.4

Danfoss A/S

DK-6430 Nordborg Denmark

Tel.: +45 74 88 22 22 Telefax: +45 74 49 09 49 Telex: 50 599 danfss dk